
PERSPECTIVE

The absence of diabetic retinopathy in patients with retinitis
pigmentosa: implications for pathophysiology and possible
treatment

G B Arden

Diabetic retinopathy (DR) is a leading cause of blindness
but it is not known why retinopathy should be so early and
so severe a complication of diabetes. The sensory loss
caused by minute retinal lesions is part of the problem, but
the diabetic changes in the brain are diVerent and less seri-
ous than in the retina, often described as an outpost of the
brain. This has led to the concept of a local factor being
responsible for the microvasculopathy of DR. There are
physiological factors unique to the retina, and it is
suggested below how these, by causing hypoxia very early
in diabetes, could activate cytokines that produce the
microvascular changes. If retinal hypoxia is an important
causal factor in the production of DR, prevention of
hypoxia should ameliorate DR. This hypothesis predicts
that retinitis pigmentosa (RP) should prevent DR. Both
old and new work is described, which indicates that this is
in fact the case, thus pointing to new, simple, and eVective
ways of delaying the progress of diabetic retinopathy.

Direct comparison of retinal and brain capillaries taken
from diabetics show very considerable diVerences1 (Table
1), which indicate a “local factor” in the development of
DR. It has been suggested2 that the local factor is related to
what is unique to the retina, the photoreceptors. The 120
million rods have the highest metabolic rate of any cell in
the body. In darkness, the outer limb membrane “leaks”,
causing an inward “dark current”. This current is reduced
by light, and at normal photopic levels is shut oV
completely. In full dark adaptation sodium ions and water
enter the outer limb at a maximal rate, and are pumped out
in the inner limb.3 The entire cytosol volume is pumped in
about 15 seconds.4 This process requires a great deal of
energy and a large oxygen supply. However, the rods are
avascular. Despite the “wall” of blood in the choroid and
the extensive ramification of the central artery of the
retina, oxygen tension ([PO2]) among the unusually large
mitochondria of the inner limb is essentially zero.5–7 When
a flash of light is delivered to the retina, [PO2] abruptly rises
as the pumps slow down.8 Figure 1 shows this eVect.

Recent work9–13 confirms this result, and also shows that
in dark adaptation the receptor layer removes considerable
amounts of oxygen from the inner retina so [PO2] changes
with illumination can also be seen there.14 The unusually

low [PO2] would of course aVect many other cells adversely.
Although some compensatory mechanisms may occur,
very small decreases in normal oxygen supply aVect retinal
function. Thus, dark adaptation is incomplete at reduced
air pressures equivalent to heights of only 3000 feet—
aeroplane cabins are pressurised to 7000 feet—and
photopic vision is only aVected at about 12 000 feet.2 15–17

Mild unilateral carotid insuYciency causes a unilateral and
reversible loss of rod threshold.18 19 Polycythaemia vera
produces a rheological change in red blood cells that eVec-
tively slightly reduces oxygen delivery: and, again, rod
threshold increases, reversibly.20

Thus, the normal retina in dark adaptation uses so much
oxygen that it borders on the pathologically anoxic. There
is also evidence that, in diabetics, the retina suVers from
oxygen lack before the onset of clinical DR. The
electroretinogram becomes abnormal years before fundu-
scopic changes can be seen.21 Both (photopic) contrast
sensitivity22 and colour vision23 are impaired even before
any microaneurysms are present; and inhaling oxygen from
a face mask partially reverses the raised threshold,
although the extra oxygen carried to the retina is very
small. Scotopic threshold has been known for half a
century to be more seriously aVected.16 24 Recent investiga-
tions suggest that in mild DR, the threshold initially falls
normally, but then recovery ceases, as it would if dark
adaptation was occurring in the presence of a dim

Table 1 DiVerences between retinal and brain capillaries of 10 diabetic
and normal dogs. Duration of diabetes: 5 years

Abnormality Retina Brain Normal retina

Microaneurysms 43 0 0
Pericyte ghosts 25 0 3
Acellular capillaries 195 0 0
Thickness of basement

membrane (nm) 237 171 135

From Kern and Engermann.1 The original contains the statistics and similar
data on other dogs made diabetic with galactose.

Figure 1 Relation between retinal depth and oxygen tension in darkness
and light. Redrawn from refs 5–7.
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background light.17 Direct measurement of [PO2] in
diabetic cat retina has disclosed reductions below the nor-
mal even in areas without evident capillary dropout. Thus,
it is certain that the diabetic retina rather than being
hyperoxic, as is commonly supposed, suVers oxygen
lack.25–27 All recent work on human retinal blood flow
shows that at very early stages of diabetic retinopathy, the
circulating blood volume decreases slightly.28–31 The
vasodilatation that occurs slightly later (in the presence of
hyperglycaemia) is quite diVerent. The hypoxia of early
diabetic retina is easily explained. The known rheological
changes in red blood cells32 (similar to polycythaemia
vera), the increase in the thickness of capillary basal mem-
branes,1 the alteration in the dissociation curve for
glycosylated haemoglobin, and the extra demand for
oxygen consequent on higher intracellular glucose levels
could all cause functional hypoxia.32–35

If the early diabetic retina is hypoxic, does this matter?
Epidemiological evidence shows that anaemia is (after
hyperglycaemia) the greatest risk factor for the develop-
ment of DR, but the most compelling evidence comes from
panretinal photocoagulation (PRP). It was thought that
PRP might work by closing leaking vessels and thus
preventing the release of vasoformative factors,36 37 but it
now appears that the major cause of the eYciency of the
treatment is that it reduces the retinal oxygen need and
increases retinal [PO2].

38

How could a decrease in retinal [PO2] cause diabetic
retinopathy? This question has recently been answered by
studies on the cytokine vascular endothelial growth factor
(VEGF). VEGF levels increase in diabetic retina.39–42 They
are enormous in vitreous samples from patients with
proliferative DR,43 44 are related to disease severity45 and
decrease after successful treatment.46 The rise occurs in
humans and animals before the development of microvas-
cular changes.47–51 Injections of VEGF can produce prolif-
erative retinopathy. VEGF is produced by glia (Müller)
cells, which show signs of hyperactivity in early DR at the
level of the outer retina, and the receptors for VEGF are
located on small vessels in the inner retina.46 52–54 Here
VEGF damages endothelial cells and cause leakage.55

VEGF is upregulated by hyperglycaemia51 56 and, very sig-
nificantly, by hypoxia and the mechanism is such that brief
episodes of hypoxia can cause prolonged periods of
upregulation.57 Mechanisms of action of VEGF have been
elucidated.58–63 Blockage of VEGF receptors can prevent
the retinal neovascularisation and the increased permeabil-
ity caused by VEGF.64 65

Thus, a complete chain of evidence implicates VEGF in
the causation of DR, and the initial reduction in oxygen
supply (in relation to need) could act to initiate the
changes which then enter a vicious circle. It is interesting
that the nephropathy which accompanies DR is also
apparently caused by VEGF acting on glomerular
membranes.66 Of course this is not to deny the place of
other causes of DR (which are outside the scope of this
review), but the importance of real anoxia preceding DR,
independent of hyperglycaemia, has not previously been
highlighted.

A hypothesis which suggests that retinal anoxia is a
major underlying cause of DR can be tested. Reduction in
retinal metabolism should be associated with a decrease in
the development of DR. This is in fact the case. Retinal
scars, choroiditis, or advanced glaucoma are all epidemio-
logically associated with a reduction in DR. Crucially,
since rod activity is supposedly responsible for DR, in the
absence of rods DR should not occur. Anecdotal evidence
of this nature goes back to 1966,67–69 and in diabetic people
who also suVer RP or choroideraemia, the changes of DR
never occur (personal communications). However, there is

only one recent letter70 on this subject, and like the other
citations67–69 it deals only with proliferative retinopathy.
Accordingly, further work was done to better establish the
absence of DR in patients with RP.

A large group of inherited degenerative retinal diseases
(all called RP) are characterised by an early loss of rod
function. Loss of cone vision occurs later, with scotomata,
although the function of the fovea is often maintained until
middle age.70–73 Although the phenotypes are similar,
molecular genetic studies have shown a wide variety of
basic abnormalities. Thus, more than 30% of patients with
autosomal dominant inheritance have abnormalities in the
gene (Rho) coding for rhodopsin.73–76 However, mutations
in genes coding for other photoreceptor structural proteins
and proteins concerned with phototransduction also
produce RP.77–87 In addition, a number of examples have
been reported in which quite diVerent phenotypes can be
caused by genetic defects that also cause clinical RP.88 RP
is also associated with defects of quite diVerent genes—for
example, those concerned with the production of myosin89

or the mutations in mitochondrial DNA found in families
with maternal inheritance of retinal abnormality
(MIDD).90–93

RP and diabetes occur independently. Therefore,
although each condition is relatively common, the number
of patients with both conditions seen by doctors with large
practices is quite small. To identify a relatively large
number of patients, advertisements were placed in the
internet “chat rooms” of RP patients, and contact made
with the websites of patient support groups, requesting
patients with both conditions to reply to the author. Some
of these were reprinted in braille news sheets. Those reply-
ing were sent a brief questionnaire to determine if both
diseases were present (Date of birth? Date of diagnosis of
diabetes? Do you take insulin? What drugs do you take? At
what age were you night blind? What is your vision now?
Could you attend a centre to have special photographs of
your eyes?). The questionnaire also asked for names and
addresses of diabetologists and ophthalmologists who were
caring for the patients, and requested permission to
approach these people with more detailed questionnaires.
The attending doctors were approached to determine the
ocular and diabetic status of the patients, even when the
patients also gave the details themselves and were informed
and definite. The doctors were asked to confirm the type of
RP, the date at which the patient became night blind or the
field became constricted, the degree of diabetic control, the
type of diabetes, and the presence or absence of other dia-
betic complications. They were asked to provide fundus
photographs. The investigation conformed to the Declara-
tion of Helsinki. Ethical approval was obtained locally and
from the Foundation Fighting Blindness.

Names and addresses of over 200 patients were received,
mostly from the patients’ support groups. The largest
number, 168, came from the Foundation Fighting
Blindness (USA). Sixty seven patients replied to the initial
questionnaire. They lived in a number of diVerent
countries—USA, New Zealand, Australia, Ireland, France,
Germany, Switzerland, and the UK. The proportion of
“take up” was lowest for the USA (20%). This is possibly
because the FFB registers have been in existence longest,
and patients on the register having moved house more, or
have died, grown older, and been unable to respond to
written communications.

Of the replies, it was established that seven did not have
RP. All these were French (RP is the French acronym for
proliferative DR). Of the remainder, two patients’ relatives
were unwilling to provide further information and some
doctors, although repeatedly approached, did not respond.
The final results are shown in Table 2. No patient had any
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DR. In view of the relatively high age of onset in the IDDM
group (35 years), the identification of the type of diabetes
in some patients is suspect. In some cases, only
ophthalmologists replied, and some stated that they did
not know if the patients had non-ocular complications of
diabetes, or they did not know the details of treatment.
However, copies of medical notes and fundus photographs
(of varying quality) were also provided in a number of
cases. No patient had had the four field standard
photographs mandatory for new epidemiological studies
and no patient was willing to attend a (remote) centre for
such photographs to be taken. Thus the patients’ present
ophthalmic state is well but not perfectly documented. The
reduced number of patients in the last rows of Table 2
reflect the lack of information in the doctors’ files about
events in their patients’ past. Although various types of RP
inheritance were represented—autosomal dominant, auto-
somal recessive, and X linked, as well as Usher’s type 1—in
only one case had genetic screening been performed. Two
cases of Lawrence-Moon-Bartlett-Biedel syndrome are
included. The mean age of the patients responding is high,
and so therefore is the duration of their diabetes. Since
about 40% of those responding with appropriate infor-
mation had other diabetic complications, the total absence
of any signs of DR is striking. There were no microaneu-
rysms in the sample, no exudates of any type, and no
haemorrhages in the retina. Patients were positive that they
had never had any retinal abnormalities. Individual
histories are illustrative: thus, one patient developed
diabetes in early childhood, and 45 years later has no DR,
although she has diabetic nephropathy requiring dialysis,
and diabetic cardiopathy. Another, aged 78, who devel-
oped diabetes aged 5 has no DR. Another, aged 68, with
autosomal dominant inheritance reported his night vision
became poor 16 years after the onset of diabetes, confirm-
ing70 the considerable protection against the appearance of
DR in patients with RP.

Although the sample is still small, it is double that of all
the other reports combined.67–70 It is unrepresentative, if
only for the age of the respondents, though for the
purposes of the investigation the long duration of DM is an
advantage. The results completely bear out the belief of
ophthalmologists specialising in retinal degenerations that
RP protects against DR and supplement the previous sur-
vey of typical RP,70 which was concerned only with the
presence of proliferative retinopathy. It is reasonably
certain that replies were obtained for people with a number
of diVerent mutations in diVerent chromosomes.

By making the assumptions (as in Holmes-Walker
et al 92) that previous epidemiological studies94 95 of DR are
appropriate for this survey (that is, conservatively, ∼75 % of
patients should have fundal changes of DR 15 years after
diagnosis) the probability of obtaining, by chance, a popu-
lation of 55 cases with RP and no DR is extremely small.
The crude binomial probability is 4/10 000 (0.7527). Type
II patients may develop diabetes when the retina is
relatively non-functional and atrophic. However, in type I,
the mean interval between night blindness and the onset of

DM is only ∼7 years and thus many patients had relatively
large areas of partially functioning retina when DM began.
In three cases DM developed in childhood, and these
patients must have had considerable retinal function and
diabetes for more than 10 years. Thus, although the meth-
odology of a retrospective survey is not ideal, it does also
highlight the point that these patients have never exhibited
evidence of background retinopathy. There are so many
genetic changes which cause RP that the only single unify-
ing cause for the protection is the loss of photoreceptors,
importantly rods. In many cases of autosomal dominant
RP 50% of rods vanish with an elevation of rod threshold
by only 0.3 log unit (due to a loss in the “quantum
catch”).2 17 This degree of night blindness should be as
eVective as a PRP which “burnt” 50% of the retina, and
illustrates why RP is so protective.

Very occasionally, patients with RP may develop neovas-
cularisation at the optic disc which can regress or develop,
but this phenomenon is not understood and the process
quite diVerent from DR.96–98 Maternally inherited diabetes
and deafness (MIDD3243), a mitochondrial disease of
adult life, sometimes also causes a pigmentary retinopathy
that diVers considerably from the more common forms of
RP in which rod loss occurs early. Thus, where
electroretinograms (ERGs) have been performed on
patients with MIDD, they are abnormal in only 4/13, and
rod and cone ERGs are equally aVected. In nine of 24
there is either reduced visual acuity or an abnormal visual
cortical evoked potential, suggesting earlier macular
involvement than in classic RP. Of 24 MIDD cases with
DM and pigmentary retinopathy reported, in two diVerent
investigations, five have non-proliferative DR,91–93 so they
are significantly diVerent (÷2 test) from ordinary RP (Table
2). In cases where there is no RP, the incidence of DR is
higher, so even incomplete rod loss is partially protective
against DR. The cause of MIDD is an abnormality in the
reaction centres that produce a proton gradient in the
mitochondrion. The variability of the symptomatology is
thought to be due to the simultaneous occurrence of nor-
mal and aVected reaction centres in the same mitochon-
drion, and the normal/abnormal ratio in diVerent tissues
and cells. The way diabetes develops has recently been elu-
cidated.99 The fairly frequent occurrence of lesions in pho-
toreceptors is not unexpected in view of the intense meta-
bolic requirements of the inner limb mitochondria.

Comparison of MIDD and the nuclear genetic distur-
bances may help to discriminate between rival hypoth-
eses2 17 70 of the formation of DR. It has been suggested that
an important factor in the production of DR is the produc-
tion of free radicals. The proposed sequence was that in
DM increased glycolysis leads to acidosis and the retina is
also hyperoxic. Under such conditions proton gradients
induce free radicals,99 and these cause DR. The absence of
DR in RP was explained by the suggestion that loss of pho-
toreceptors reduced glycolysis and decreased the produc-
tion of free radicals. In MIDD the basic loss is an inability
to make ATP through oxidative phosphorylation and loss
of the proton gradient. It is suggested that glycolysis
increases.21 93 If the production of free radicals depends on
the establishment of a proton gradient, MIDD might be
expected to be protective against DR but this is the case
only when retinal degeneration occurs. Thus, the observa-
tions on MIDD make the importance of free radicals to
DR less likely and are consistent with the anoxia/VEGF
hypothesis described here.

In life, dark adaptation and its accompanying low [PO2]
occurs mostly during sleep.2 17 In turn, this suggests that
non-destructive methods of reducing rod dark current
could help prevent DR by increasing retinal oxygen tension
when it is lowest.100–102 The dark current is maintained by

Table 2 Details of a survey of patients with diabetes mellitus and retinitis
pigmentosa

Classification of diabetes IDDM NIDDM
Number of replies validated by doctor 25 30
Mean age (years (SD)) 60.8 (16.8) 65.5 (15.3)
Maximum, median, and minimum ages 81, 61, 23 88, 67, 27
Number of cases of diabetic retinopathy 0 0
Mean age at diagnosis of diabetes (years) 35 48
Mean duration of diabetes (years) 19 14.5
Interval between night blindness onset

and diabetes onset (years) 7.2 (n =10) 19.5 (n =24)
Patients with other non-ocular

complications of diabetes 5 (n=11) 8 (n =18)
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cyclic guanydyl monophosphate (cGMP), which is de-
stroyed after the absorption of photons. Intracellular
calcium accelerates cGMP cyclase and thus the formation
of cGMP, but when the pores in the rod outer limb mem-
brane close under the influence of light, calcium entry is
reduced and a Na-Ca exchanger greatly reduces [Ca2+]in.
This is one important mechanism of light adaptation.3

Reducing rod guanydyl cyclase activity, or pharmacologi-
cally preventing calcium entry, or preventing full dark
adaptation by a continuous low level of background light
should be an eVective form of decreasing peak outer limb
retinal oxygen demand. Such interventions could thus slow
the progress of diabetic retinopathy. The latter method is
simple, inexpensive, and particularly appropriate for the
developing world.

Note added at proof stage:
Since this article was submitted it has been shown103 that in
a group of long term diabetics who do not develop DR, the
upregulation of VEGF by anoxia is largely absent, thus
lending strong support to the hypothesis developed above.
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ful discussions.
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